
Weaknesses in the Key Scheduling Algorithm of

RC4

Scott Fluhrer1, Itsik Mantin2, and Adi Shamir2

1 Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134
sfluhrer@cisco.com

2 Computer Science department, The Weizmann Institute, Rehovot 76100, Israel.
fitsik,shamirg@wisdom.weizmann.ac.il

Abstract. In this paper we present several weaknesses in the key schedul-
ing algorithm of RC4, and describe their cryptanalytic signi�cance. We
identify a large number of weak keys, in which knowledge of a small
number of key bits su�ces to determine many state and output bits
with non-negligible probability. We use these weak keys to construct
new distinguishers for RC4, and to mount related key attacks with prac-
tical complexities. Finally, we show that RC4 is completely insecure in a
common mode of operation which is used in the widely deployed Wired
Equivalent Privacy protocol (WEP, which is part of the 802.11 standard),
in which a �xed secret key is concatenated with known IV modi�ers in
order to encrypt di�erent messages. Our new passive ciphertext-only at-
tack on this mode can recover an arbitrarily long key in a negligible
amount of time which grows only linearly with its size, both for 24 and
128 bit IV modi�ers.

1 Introduction

RC4 is the most widely used stream cipher in software applications. It was
designed by Ron Rivest in 1987 and kept as a trade secret until it leaked out in
1994. RC4 has a secret internal state which is a permutation of all the N = 2n

possible n bits words, along with two indices in it. In practical applications n = 8,
and thus RC4 has a huge state of log2(2

8!� (28)2) � 1700 bits.
In this paper we analyze the Key Scheduling Algorithm (KSA) which derives

the initial state from a variable size key, and describe two signi�cant weaknesses
of this process. The �rst weakness is the existence of large classes of weak keys,
in which a small part of the secret key determines a large number of bits of
the initial permutation (KSA output). In addition, the Pseudo Random Gen-
eration Algorithm (PRGA) translates these patterns in the initial permutation
into patterns in the pre�x of the output stream, and thus RC4 has the undesir-
able property that for these weak keys its initial outputs are disproportionally
a�ected by a small number of key bits. These weak keys have length which is
divisible by some non-trivial power of two, i.e., ` = 2qm for some q > 01. When

1 Here and in the rest of the paper ` is the number of words of K, where each word
contains n bits.

RC4n uses such a weak key of ` words, �xing n + q(` � 1) + 1 bits of K (as a
particular pattern) determines �(qN) bits of the initial permutation with prob-
ability of one half and determines various pre�xes of the output stream with
various probabilities (depending on their length).

The second weakness is a related key vulnerability, which applies when part
of the key presented to the KSA is exposed to the attacker. It consists of the
observation that when the same secret part of the key is used with numerous
di�erent exposed values, an attacker can rederive the secret part by analyzing
the initial word of the keystreams with relatively little work. This concatena-
tion of a long term secret part with an attacker visible part is a commonly used
mode of RC4, and in particular it is used in the WEP (Wired Equivalent Pri-
vacy) protocol, which protects many wireless networks. Our new attack on this
mode is practical for any key size and for any modi�er size, including the 24 bit
recommended in the original WEP and the 128 bit recommended in the revised
version WEP2.

The paper is organized in the following way: In Section 2 we describe RC4
and previous results about its security. In Section 3 we consider a slightly mod-
i�ed variant of the Key Scheduling Algorithm, called KSA�, and prove that a
particular pattern of a small number of key bits su�ces to completely determine
a large number of state bits. Afterwards, we show that this weakness of KSA�,
which we denote as the invariance weakness, exists (in a weaker form) also in
the original KSA. In Section 4 we show that with high probability, the patterns
of initial states associated with these weak keys also propagate into the �rst
few outputs, and thus a small number of weak key bits determine a large num-
ber of bits in the output stream. In Section 5 we describe several cryptanalytic
applications of the invariance weakness, including a new type of distinguisher.
In Sections 6 and 7 we describe the second weakness, which we denote as the
IV weakness, and show that a common method of using RC4 is vulnerable to
a practical attack due to this weakness. In Section 8, we show how both these
weaknesses can separately be used in a related key attack. In the appendices, we
examine how the IV weakness can be used to attack a real system (appendix A),
how the invariance weakness can be used to construct a ciphertext-only distin-
guisher and to prove that RC4 has low sampling resistance (appendices B and
C), and how to derive the secret key from an early permutation state (appendix
D).

2 RC4 and Its Security

2.1 Description of RC4

RC4 consists of two parts (described in Figure 1): A key scheduling algorithm
KSA which turns a random key (whose typical size is 40-256 bits) into an initial
permutation S of f0; : : : ; N � 1g, and an output generation part PRGA which
uses this permutation to generate a pseudo-random output sequence.

The PRGA initializes two indices i and j to 0, and then loops over four
simple operations which increment i as a counter, increment j pseudo randomly,

exchange the two values of S pointed to by i and j, and output the value of S
pointed to by S[i] + S[j]2. Note that every entry of S is swapped at least once
(possibly with itself) within anyN consecutive rounds, and thus the permutation
S evolves fairly rapidly during the output generation process.

The KSA consists of N loops that are similar to the PRGA round operation.
It initializes S to be the identity permutation and i and j to 0, and applies the
PRGA round operation N times, stepping i across S, and updating j by adding
S[i] and the next word of the key (in cyclic order). We will call each round of
KSA a step.

KSA(K)
Initialization:

For i = 0 : : : N � 1
S[i] = i

j = 0
Scrambling:

For i = 0 : : : N � 1
j = j + S[i] +K[i mod `]
Swap(S[i]; S[j])

PRGA(K)
Initialization:

i = 0
j = 0

Generation loop:
i = i+ 1
j = j + S[i]
Swap(S[i]; S[j])
Output z = S[S[i] + S[j]]

Fig. 1. The Key Scheduling Algorithm and the Pseudo-Random Generation Algorithm

2.2 Previous Attacks on RC4

Due to the huge e�ective key of RC4, attacking the PRGA seems to be infea-
sible (the best known attack on this part requires time that exceeds 2700). The
only practical results related to the PRGA deal with the construction of dis-
tinguishers. Fluhrer and McGrew described in [FM00] how to distinguish RC4
outputs from random strings with 230 data. A better distinguisher which re-
quires 28 data was described by Mantin and Shamir in [MS01]. However, this
distinguisher could only be used to mount a partial attack on RC4 in broadcast
applications.

The fact that the initialization of RC4 is very simple stimulated considerable
research on this mechanism of RC4. In particular, Roos discovered in [Roo95] a
class of weak keys that reduces their e�ective size by �ve bits, and Grosul and
Wallach showed in [GW00] that for large keys whose size is close to N words,
RC4 is vulnerable to a related key attack.

More analysis of the security of RC4 can be found in [KMP+98], [Gol97] and
[MT98].

2 Here and in the rest of the paper all the additions are carried out modulo N

3 The Invariance Weakness

Due to space limitations we prove here the invariance weakness only for a sim-
pli�ed variant of the KSA, which we denote as KSA� and describe in Figure 2.
The only di�erence between them is that KSA� updates i at the beginning of
the loop, whereas KSA updates i at the end of the loop. After formulating and
proving the existence of this weakness in KSA�, we describe the modi�cations
required to apply this analysis to the real KSA.

KSA(K)a

For i = 0 : : : N � 1
S[i] = i

i = 0
j = 0
Repeat N times

j = j + S[i] +K[i mod `]
Swap(S[i]; S[j])
i = i+ 1

KSA�(K)
For i = 0 : : : N � 1

S[i] = i

i = 0
j = 0
Repeat N times

i = i+ 1
j = j + S[i] +K[i mod `]
Swap(S[i]; S[j])

a KSA is rewritten in a way which clari�es the relation to KSA�

Fig. 2. KSA vs. KSA�

3.1 De�nitions

De�nition 1 Let S be a permutation of f0; : : : ; N � 1g, t be an index in S and

b be some integer. Then if S[t]
modb
� t, the permutation S is said to b-conserve

the index t. Otherwise, the permutation S is said to b-unconserve the index t.

Denote the permutation S and the indices i and j after round t of KSA� as St, it
and jt respectively. Denote the number of indices that a permutation b-conserves
as Ib(S). For the sake of simplicity, we often write It instead of Ib(St).

De�nition 2 A permutation S of f0; : : : ; N � 1g is b-conserving if Ib(S) = N ,

and is almost b-conserving if Ib(S) � N � 2.

De�nition 3 Let b; ` be integers, and let K be an ` words key. Then K is called

a b-exact key if for any index t K[t mod `] � (1� t) (mod b). In case K[0] = 1
and msb(K[1]) = 1, K is called a special b-exact key.

Notice that for this condition to hold, it is necessary (but not su�cient) that
b j `.

3.2 The Weakness

Theorem 1 Let q � n and ` be integers and b
def
= 2q. Suppose that b j ` and

let K be a b-exact key of ` words. Then the permutation S = KSA�(K) is

b-conserving.

Before getting to the proof itself, we will prove an auxiliary lemma

Lemma 1 If it+1 � jt+1 (mod b), then It+1 = It.

Proof: The only operation that might a�ect S (and maybe I) is the swapping op-
eration. However, when it+1 and jt+1 are equivalent (mod b), St+1 b-conserves
it+1 (jt+1) if and only if St b-conserved jt (it). Thus the number of indices S
b-conserves remains the same. ut

Proof:(of Theorem 1) We will prove by induction on t that for any 1 � t � N ,
it turns out that Ib(St) = N and it � jt (mod b). This in particular implies that
IN = N , which makes the output permutation b-conserving.

For t = 0 (before the �rst round), the claim is trivial because i0 = j0 = 0
and S0 is the identity permutation which is b-conserving for every b. Suppose
that jt � it and St is b-conserving. Then it+1 = it + 1 and

jt+1 = jt + St[it+1] +K[it+1 mod `]
modb
� it + it+1 + (1� it+1) = it + 1 = it+1

Thus, it+1 � jt+1 (mod b) and by applying Lemma 1 we get It+1 = It = N and
therefore St+1 is b-conserving. ut

KSA� thus transforms special patterns in the key into corresponding pat-
terns in the initial permutation. The fraction of determined permutation bits is
proportional to the fraction of �xed key bits. For example, applying this result
to RC4n=8;`=6 and q = 1, 6 out of the 48 key bits completely determine 252 out
of the 1684 permutation bits.

3.3 Adjustments to KSA

The small di�erence between KSA� and KSA (see Figure 2) is essential in that
KSA, applied to a b-exact key, does not preserve the equivalence (mod b) of i
and j even after the �rst round. Analyzing its execution on a b-exact key gives

j1 = j0 + S0[i1] +K[i1] = 0 + S0[0] +K[0] = K[0]
modb
� 1

modb

6� 0 = i1

and thus the structure described in Section 3.2 cannot be preserved by the cyclic
use of the words of K. However, the invariance weakness can be adjusted to the
real KSA, and the proper modi�cations are formulated in the following theorem:

Theorem 2 Let q � n and ` be integers and b
def
= 2q. Suppose that b j ` and let

K be a special b-exact key of ` words. Then

Pr[KSA(K) is almost b-conserving] � 2=5

when the probability is over the rest of the key bits.

Due to space limitations, the formal proof of this theorem (which is based
on a detailed case analysis) will appear only in the full version of this paper.
However, we can explain the intuition behind this theorem by concentrating on
the di�erences between Theorems 1 and 2, which deal with KSA� and KSA
respectively. During the �rst round, two deviations from KSA� execution oc-
cur. The �rst one is the non-equivalence of i and j which is expected to cause
non-equivalent entries to be swapped during the next rounds, thus ruining the
delicate structure that was preserved so well during KSA� execution. The sec-
ond deviation is that S b-unconserves two of the indices, i1 = 0 and j1 = K[0].
However, we can cancel the ij discrepancy by forcing K[0] (and j1) to 1. In this
case, the discrepancy in S[j1] (K[1]) causes an improper value to be added to
j, thus repairing its non-equivalence to i during the second round. At this point
there are still two unconserved indices, and this aberration is dragged across
the whole execution into the resulting permutation. Although these corrupted
entries might interfere with j updates, the pseudo-random j might reach them
before they are used to update j (i.e., before i reaches them), and send them into
a region in S where they cannot a�ect the next values of j3. The probability of
this lucky event is ampli�ed by the fact that the corrupted entries are i1 = 0
which is not touched until the termination of the KSA due to its distance from
the current location of i, and j2 = 1 +K[1] > N=2 (recall that msb(K[1]) = 1),
that is far from i1 = 2, which gives j many opportunities to reach it before i
does. The probability of N=2 pseudo random j's to reach an arbitrary value can
be bounded from below by 2/5, and extensive experimentation indicates that
this probability is actually close to one half.

4 Key-Output Correlation

In this section we will analyze the propagation of the weak key patterns into the
generated outputs. First we prove Claim 1 which deals with the highly biased
behavior of a weakened variant of the PRGA, applied to a b-conserving permu-
tation. Next, we will argue that the pre�x of the output of the original PRGA
is highly correlated to the pre�x of the swapless variant (on the same initial
permutation), which implies the existence of biases in the PRGA distribution
for these weak keys.

Claim 1 Let RC4� be a weakened variant of RC4 with no swap operations. Let

q � n, b
def
= 2q and S0 be a b-conserving permutation. Let fXtg

1

t=1 be the output

sequence generated by applying RC4� to S0, and xt
def
= Xt mod b. Then the

sequence fxtg
1

t=1 is constant.

Since there are no swap operation, the permutation does not change and re-
mains b-conserving throughout the generation process. Notice that all the values

3 if a value is pointed to by j before the swap, it will not be used as S[i] (before the
swap) for at least N � 1 rounds, and in particular it will not a�ect the values of j
during these rounds.

of S are known (mod b), as well as the initial indices i = j = 0 � 0 (mod b), and
thus the round operation (and the output values) can be simulated (mod b),
independently of S. Consequently the output sequence (mod b) is constant, and
deeper analysis implies that it is periodic with period 2b, as exempli�ed in Figure
3 for q = 1.

i j S[i] S[j] S[i] + S[j] Out

0 0 0 0 0 /
1 1 1 1 0 0
0 1 0 1 1 1
1 0 1 0 1 1
0 0 0 0 0 0
1 1 1 1 0 0
...
...

...
...

...
...

Fig. 3. The rounds of RC4�, ap-
plied to a 2-conserving permutation

1st word 1 � � � 1 1 1

2nd word n � � � 3 2 1

3th word n � � � 3 2 1

...

`th word n � � � 3 2 1

Fig. 4. The stage in which each one
of the bits is exposed during the re-
lated key attack

Recall that at each step of the PRGA, S changes in at most two locations, and
thus we can expect the pre�x of the output stream generated by RC4 from some
permutation S0, to be highly correlated with the stream generated from the same
S0 (or a slightly modi�ed one) by RC4�. In particular the stream generated by
RC4 from an almost b-conserving permutation is expected to be highly correlated
with the constant substream fxtg from Claim 1. This correlation is demonstrated
in Figure 8, where the function h �! Pr[1 � 8t � h Zt � xt mod 2q] (for special
2q-exact keys) is empirically estimated for n = 8, ` = 16 and di�erent q's. For
example, a special 2-exact key completely determines 20 output bits (the lsb's
of the �rst 20 outputs) with probability 2�4:2 instead of 2�20, and a special
16-exact key completely determines 40 output bits (4 lsb's from each of the �rst
10 outputs) with probability 2�2:3, instead of 2�40.

We have thus demonstrated a strong probabilistic correlation between some
bits of the secret key and some bits of the output stream for a large class of weak
keys. In the next section we describe how to use this correlation to cryptanalyze
RC4.

5 Cryptanalytic Applications of the Invariance Weakness

5.1 Distinguishing RC4 Streams from Randomness

In [MS01] Mantin and Shamir described a signi�cant statistical bias in the sec-
ond output word of RC4. They used this bias to construct an e�cient algorithm
which distinguishes between RC4 outputs and truly random sequences by ana-
lyzing only one word from O(N) di�erent outputs streams. This is an extremely

e�cient distinguisher, but it can be easily avoided by discarding the �rst two
words from each output stream. If these two words are discarded, the best known
distinguisher requires about 230 output words (see [FM00]). Our new observation
yields a signi�cantly better distinguisher for most of the typical key sizes. The
new distinguisher is based on the fact that for a signi�cant fraction of keys, a
signi�cant number of initial output words contain an easily recognizable pattern.
This bias is attened when the keys are chosen from a uniform distribution, but
it does not completely disappear and can be used to construct an e�cient dis-
tinguisher even when the �rst two words of each output sequence are discarded.

Notice that the probability of a special 2q-exact key to be transformed into a
2q-conserving permutation, does not depend of the key length ` (see Theorem 2).
However, the number of predetermined bits is linear in `, and consequently the
size of this bias (and thus the number of required outputs) also depends on `. In
Figure 5 we specify the quantity of data required for a reliable distinguisher, for
di�erent key sizes. In particular, for 64 bit keys the new distinguisher requires
only 221 data instead of the previously best number of 230 output words.

It is important to notice that the speci�ed output patterns extend over several
dozen output words, and thus the quality of the distinguisher is almost una�ected
by discarding the �rst few words. For example, discarding the �rst two words
causes the data required for the distinguisher to grow by a factor of between 20:5

and 22 (depending on `). Another important observation is that the biases in the
lsb's distribution can be combined in a natural way with the biased distribution
of the lsb's of English texts into an e�cient distinguisher of RC4 streams from
randomness in a ciphertext-only attack in which the attacker does not know the
actual English plaintext which was encrypted by RC4. This type of distinguishers
is discussed in Appendix B.

5.2 RC4 has Low Sampling Resistance

Biryukov, Shamir and Wagner de�ned in [BSW00] a new security measure of
stream ciphers, which they denoted as their Sampling Resistance. The strong
correlation between classes of RC4 keys and corresponding output patterns can
be used to prove that RC4 has relatively low sampling resistance, which improves
the e�ciency of time/memory/data tradeo� attacks. Further details can be found
in Appendix C.

6 RC4 Key Setup and the First Word Output

In this section, we consider related key attacks where the attacker has access to
the values of all the bits of certain words of the key. In particular, we consider the
case where the key presented to the KSA is made up of a secret key concatenated
with an attacker visible value (which we will refer to as an Initialization Vector
or IV). We will show that if the same secret key is used with numerous di�erent
initialization vectors, and the attacker can obtain the �rst word of RC4 output
corresponding to each initialization vector, he can reconstruct the secret key with

minimal e�ort. How often he can do this, the amount of e�ort and the number
of initialization vectors required depends on the order of the concatenation, the
size of the IV, and sometimes on the value of the secret key. This observation is
especially interesting, as this mode of operation is used by several commercially
deployed encryption systems ([Rei01], [LMSon]) and the �rst word of plaintexts
is often an easily guessed constant such as the date, the sender's identity, etc, and
thus the attack is practical even in a ciphertext-only mode of attack. However,
the weakness does not extend to the Secure Socket Layer protocol that browsers
use.

In terms of keystream output, this attack is interested only in the �rst word
of output from any given secret key and IV. Hence, we can simplify our model
of the output. The �rst output word depends only on three speci�c permutation
elements, as shown in the �gure below showing the state of the permutation
immediately after KSA. When those three words are as shown, the value labeled
Z will be output as the �rst word.

1 X X + Y
X Y Z

In addition, if the key setup reaches a stage where i is greater than or equal
to 1, X = Si[1] and X + Y = Si[1] + Si[Si[1]], then (if we model the remaining
swaps in the key setup as random) with probability greater than e�3 � 0:05,
none of the elements referenced by these three values will participate in any
further swaps, and in that case, the value S[S[1] +S[S[1]]] will be output as the
�rst word. With probability less than 1 � e�3 � 0:95, at least one of the three
values will participate in a swap, and be set to an e�ectively random value, which
will make the output value e�ectively random. We will refer to this situation as
the resolved condition. Our attack involves examining messages with speci�c IV
values such that, at some point, the KSA is in a resolved condition, and where
the value of S[S[1] + S[S[1]]] gives us information on the secret key. Then, we
observe su�ciently many IV values that the actual value of S[S[1] + S[S[1]]]
occurs detectably often.

7 Details of the Known IV Attack

7.1 IV Precedes the Secret Key

First consider the case where the IV is prepended to the secret key. In this circum-
stance, assuming we have an I word IV, and a secret key (K[0];K[1]; : : :K[`�1]),
we attempt to derive information on a particular word B of the secret key (K[B])
by searching for IV values such that, after the �rst I steps, SI [1] < I and

SI [1] + SI [SI [1]] = I +B. Then, with high likelihood (probability � e�
2B

N if we
model the intermediate swaps as random), we will be in a resolved condition
after step I + B, and then the most probable output value will be

Out = SI+B�1[jI+B] = SI+B�1[jI+B�1 +K[B] + SI+B�1[I +B]]

Or, in other words, if we know the value of jI+B�1 and SI+B�1, then given the
�rst word output Out, we can predict the value

K[B] = S�1I+B�1[Out]� jI+B�1 � SI+B�1[I + B]

where S�1t [X] denotes the location within the permutation St where the value
X appears. This prediction is accurate more than 5% of the time, and e�ectively
random less than 95% of the time. By collecting su�ciently many values from
di�erent IVs, we can reconstruct K[B].

In the simplest scenario (3 word chosen IVs), the attack works as follows4:
suppose that we know the �rst A words of the secret key (K[3]; : : : ;K[A + 2],
with A = 0 initially), and we want to know the next word K[A+ 3]. We exam-
ine a series of IVs of the form (A + 3; N � 1; X) for approximately 60 di�erent
values for X . At the �rst step, j is advanced by A + 3, and then S[i] and S[j]
are swapped, resulting in the key setup state which is shown schematicly below,
where the top array is the combined IV and secret key presented to the KSA,
and the bottom array is a portion of the permutation, and where the positions
of the i, j variables are indicated.

A+ 3 N � 1 X K[3] K[A+ 3]
0 1 2 A+ 3
A+ 3 1 2 0
i0 j0
Then, on the next step, i is advanced, and then the advance on j is computed,
which happens to be 0. Then, S[i] and S[j] are swapped, resulting in the below
structure:

A+ 3 N � 1 X K[3] K[A+ 3]
0 1 2 A+ 3
A+ 3 0 2 1

i1 j1
Then, on the next step, j is advanced by X + 2, which implies that each dis-
tinct IV assigns a di�erent value to j, and thus beyond this point, each IV acts
di�erently, approximating the randomness assumption made above. Since the
attacker knows the value of X and K[3]; : : :K[A+2], he can compute the exact
behavior of the key setup until he reaches step A + 3. At this point, he knows
the value of jA+2 and the exact values of the permutation SA+2. If the value at
SA+2[0] or SA+2[1] has been disturbed, the attacker discards this IV. Otherwise,
j is advanced by SA+2[i] +K[A+3], and then the swap is done, resulting in the
below structure:

A+ 3 N � 1 X K[3] K[A+ 3]
0 1 2 A+ 3
A+ 3 0 S[2] S[j]

iA+3

4 This scenario was �rst published by Wagner in [Wag95]

The attacker knows the permutation SA+2 and the value of jA+2. In addition, if
he knows the value of SA+3[A+ 3], he knows its location in SA+2, which is the
value of jA+3, and hence he would be able to compute K[A+ 3]. We also note
that iA+3 has now swept past 1, SA+3[1] and SA+3[1]+SA+3[SA+3[1]], and thus
the resolved condition exists, and hence with probability p > 0:05, by examining
the value of the �rst word of RC4 output with this IV, the attacker will obtain
the correct value of K[A+ 3]. Hence, by examining approximately 60 IVs with
the above con�guration, the attacker can rederive K[A] with a probability of
success greater than 0.5.

By iterating the above process across the secret key, the attacker can rederive
` words of secret key using 60` chosen 3 word IVs.

The next thing to note is that the attack works for IVs other than those in
the speci�c (A + 3; N � 1; X) form. Any I word IV that, after I steps, leaves
SI [1] < I and SI [1] + SI [SI [1]] = I + B will su�ce for the above attack. In
addition, since the attacker is able to simulate the �rst I steps of the key setup,
he is able to determine which IVs have this property. By examining all IVs that
have this property, we can extend this into a known IV attack, without using
an excessive number of IVs. The probabilities to �nd the next word, and the
expected number of IVs needed to obtain 60 IVs of the proper form, are given
in Figure 6 at the end of this paper.

7.2 IV Follows the Secret Key

In the case that the IV is appended to the secret key, we need to take a di�erent
approach. The previous analysis attacked individual key words. When the IV
follows the secret key, what we do instead is select IVs that give us the state of
the permutation at an early phase of the key setup, such as immediately after
the secret key has been used for the �rst time. Given that only a few swaps
have occurred up to that point, it is reasonably straight-forward to reconstruct
those swaps from the permutation state, and hence obtain the secret key (see
Appendix D for one such method).

To illustrate the attack in the simplest case, suppose we have an A word
secret key, and a 2 word IV. Further suppose that the secret key was weak in
the sense that, immediately after A steps of KSA, SA[1] = X , X < A, and
X + SA[X] = A. This is a low probability event (p � 0:00062 if A = 13),
but it depends only on the secret key. For such a weak secret key, the attacker
can assume the value of jA�1 + SA�1[A], and then examine IVs with a �rst
word of W = Y � (jA�1 + SA�1[A]). With such IVs, the value of jA will be the
preselected value Y . Then, S[A] and S[Y] are swapped, and so SA[A] = AA�1[Y].
Here, assuming Y was neither 1 nor SA[1], then the resolved condition has been
established, and with probability > 0:05, SA�1[Y] will be the �rst word output.
Then, by examining such IVs with the second word being at least 60 di�erent
values, we can observe the output a number of times and derive the value of
SA[Y] with good probability. By selecting all possible values of Y, we can directly
observe the state of the SA permutation, from which we can rederive the secret
key. We will denote this result as key recovery.

If X+SA[X] = A+1, a similar analysis would appear to apply. By assuming
SA[A], SA[A + 1] and jA, we can swap SA+1[Y] into SA+2[A + 1] for N � 2
distinct IVs for any particular Y . However, the value of jA+2 is always the same
for any particular Y , and so the probabilities that a particular IV outputs the
value S[Y] is not independently distributed. This e�ect causes the reading of the
permutation state to be 'noisy', that is, for some values of Y , we see S[Y] as the
�rst word far more often than our analysis expected, and for other values of Y ,
we see it far less often. Because of this, some of the entries SA+1[Y] cannot be
reliably recovered. Simulations assuming a 13 word secret key and n = 8 have
shown that an average of 171 words of the SA permutation state can be suc-
cessfully reconstructed, including an average of 8 words of (SA[0]; : : : ; SA[12]),
which immediately give you e�ectively 8 key words. With this information, the
key is reduced enough that it can be brute forced. We will denote this result as
key reduction.

If we have a 3 word IV, then there are more types of weak secret keys. For
example, consider a secret key where SA[1] = 1 and SA[A] = A. Then, by as-
suming jA, we can examine IV where the �rst word has a value W so that the
new value of jA+1 is 1, and so SA[1] and SA[A] are swapped, leaving the state
after A+ 1 steps to be:

K[0] K[1] K[A� 1] W X Z
0 1 A� 1 A A+ 1 A+ 2
SA[0] A SA[A� 1] 1 SA[A+ 1] SA[A+ 2]

jA+1 iA+1

Then, by assuming SA[A + 1] (which with high probability is A + 1, and
will always be at most A + 1), we can examine IVs with the second word X =
Y � (1 + SA[A + 1]), for an arbitrary Y , which will swap the value of SA[Y]
into SA+1[A + 1]. Assuming Y isn't either 1 or A, then the resolved condition
have been set up, and using a number of values for the third IV word Z, we can
deduce the value of SA+1[Y] for an arbitrary Y , giving us the permutation after
A steps.

There are a number of other types of weak keys that the attacker can take
advantage of, summarized in Figure 7 found at the end of this paper.

The last weak secret key listed in Figure 7 is especially interesting, in that
the technique that exposes the weakness is rather di�erent than that of the other
weak secret keys listed. Immediately after A steps, the state is:

K[0] K[1] K[X] W Z
0 1 X A A+ 1
SA[0] X SA[X] Z SA[A+ 1]

iA

The initial IV word causes SA[X] and SA[A] to be swapped, leaving the state
as:

K[0] K[1] K[X] W Z
0 1 X A A+ 1
SA[0] X Z SA[X] SA[A+ 1]

iA

Now, to inquire about the value of SX+Z [Y +Const], we examine numerous
IVs with second and third words that all set the value of jA+3 to be Y . The KSA
will continue for X + Z � (A + 3) more steps until i now points to the element
SX+Z [X + Z]. At this point, since we haven't gone through a great number of
steps since we knew the value of j (since X+Z�(A+3)� A�4), then with high
probability, jX+Z+1 = Y +Const, where Const is a constant term that depends
only on the state of the permutation SA+1. If this is true, then SX+Z+1[X+Z] =
SX+Z [Y + const], and if the elements S[1] and S[X] have not been disturbed
(again, this happens with high probability), the resolved condition has been
achieved, and the �rst output word will be biased towards SX+Z [Y + const].
In addition, because the value of const will be the same independent of Y , its
value can easily be determined, thus allowing the attacker to observe many of
the values of SX+Z . This class of weak keys requires far more known IVs to
exploit, but also occurs relatively frequently.

If we have a 4 word5 IV, then the same general approach as the previous
analysis can be used to recover virtually all secret keys, given su�cient IVs. First,
we assume jA�1, SA�1[A], SA�1[A+1], SA�1[A+2], SA�1[A+3] 6. Then, based
on this assumption, we search for IVs that, after A+ 4 steps, sets SA+4[1] = X
and SA+4[X] = Z for X;Z < A + 4; X + Z � A + 4, and we note the value of
jA+4 = Y . Then, we save the value of X +Z, the value Y and the value output
as the �rst word for that particular IV. With nontrivial probability, the value of
this word will be SX+Z [Y + constX+Z], where constX+Z is a constant term that
depends on the secret key, and the value X+Z. Since that value is independent
of the IV, we can collect numerous possible values of SX+Z [Y + constX+Z] for
various values of X + Z, and use that to �rst reconstruct constX+Z , and then
reconstruct SX+Z .

8 Related-Key Attacks on RC4

In this section, we discuss two related-key attacks based on weaknesses discussed
previously in this paper. They work within the following model: the attacker is
given a black box that has a randomly chosen RC4 key K inside it, an output
button and an input tape of jKj words. In each step the attacker can either press
the output button to get the next output word, or write � on the tape, which
causes the black-box to restart the output generation process with a new key
de�ned as K 0 = K � �. The purpose of the attacker is to �nd the key K (or
some information about it).

5 This approach generalizes in the obvious way to longer IVs.
6 Note that SA�1[x] � x for x � A. This limits the size of the search required.

8.1 Related-Key Attack Based on the Invariance Weakness

This attack works when the number of key words, is a power of two. It consists of
n stages where in stage q the qth bit of every key word is exposed7. The predicate
CheckKey takes as input an RC4 blackbox and a parameter q (the stage number)
and decides whether the key in the box is special 2q-exact. This purpose can be
achieved by randomly sampling key bits that are irrelevant for the 2q-exactness of
the key and estimating the expected length of q-patterned output. For a special
2q-exact key the expected length will be signi�cantly longer than in a random
output (where it is less than 2) and thus CheckKey works in time O(1). The
procedure Expand takes as input an RC4 blackbox and a parameter q (the stage
number), assumes that the key in the box is special 2q�1-exact, and makes it
special 2q-exact. The method for doing so is by enumerating all the possibilities
for the qth bits (2`�1 such possibilities) and invoking CheckKey to decide when
the key in the box is special 2q-exact. Expand works in a slightly di�erent way
for q = 1 and q = n. For q = 1, except for the lsb's, it determines the complete
K[0] (by forcing it to 1) and msb(K[1]). For q = n, there is only one 2n-exact
key and consequently we can calculate the output produced from this key and
replace CheckKey by simple comparison. The time complexity of this stage is
O(2n+`) for q = 1 and O(2`�1) for any other q.

The total time required for the attack is thus O(2n+`) + (n � 1)O(2`) =
O(2n+`). For typical RC4n=8 key with 32 bytes, the complexity of exhaustive
search is completely impractical (2256), whereas the complexity of the new attack
is only O(2n+`) = O(240).

8.2 Related-Key Attack Based on Known IV Weakness

In this section we use the known IV weaknesses to develop an e�cient related
key attack on RC4.

The attack consists of 3 stages, where in the �rst two stages we gain informa-
tion on the �rst three words of the secret key, and in the third stage we iterate
down the key, and expose each word of the key successively. The stages of the
attack are as follows:

Step 1 This step attempts to �nd values of K[0], K[1] such that S1[1] = 1,
and reveal the value of K[2]. The procedure is to select random values of
(X;Y), and for each such random value, write onto the tape 240 vectors
with the initial four words (X;Y; Z;W) for Z 2 f0; N=4; N=2; 3N=4g and
with 60 distinct random values of W , and for each such vector, press the
output button. If X and Y are such that S1[1] = 1 (for the modi�ed key),
then the output of the �rst word will be biased towards 3+(K[2]�Z), unless
that value happens to be 1. Hence, for at least 3 of the selected values of
Z, the �rst word outputs will be biased towards one of const, const+N=4,
const + N=2, const + 3N=4. This is detectable, and also by examining the
value of const, the attacker can reconstruct the value of K[2]. We expect to
try N random values of (X;Y) before �nding a pair that is appropriate.

7 In fact, K[1] is fully revealed during the �rst stage (see Figure 4)

Step 2 This step attempts to �nd the values of K[0], K[1]. The procedure is to
write on the tape 60 vectors with the initial four words (X;Y; Z;W), where
X , Y are the values recovered in the previous step, Z = (N � 3) � K[2],
and with 60 distinct random values of W , and for each such vector, press
the output button. This particular initial sequence assures that S2[1] = 1
and S2[2] = S1[0] = K[0], and hence the output will be biased towards K[0].
Once that has been recovered, K[1] can be computed.

Step 3 This step iteratively recovers individual words of the key. It operates
by running a subprocedure that assumes that we have already recovered
(K[0]; : : : ;K[A� 1]), and want to learn the value of K[A]. The procedure is
to write 60 vectors that have the property that, given the known values of
(K[0]; : : : ;K[A� 1]), that SA�1[1] = X < A and X + SA�1[X] = A. With
60 such vectors, we can use the procedure shown in 7.1 to rederive K[A].

The total time required for the attack is thus (because 2n � `):

Step1 + Step2 + (`� 3) � Step3 = O(2n+8) + 26 + (`� 3)26 = O(2n+8)

For a RC4 key with n = 8 the time complexity is O(216) and is essentially
independent of the key length.

8.3 Comparing the Attacks

Both attacks are able to completely reconstruct the randomly chosen RC4 key8

with a number of chosen keys and amount of work that is signi�cantly below
that of brute force (except for extremely short RC4 keys). The �rst attack scales
upwards as the key grows longer, while the time complexity of the second attack
is independent of key length, with a cross-over point at ` = 8.

However, due to the second word weakness, future implementations of RC4
are likely to discard some pre�x of the output stream, and in this case the second
attack becomes di�cult to apply { output word x depends on 2x+1 permutation
elements immediately after KSA, and all the 2x+1 elements must occur before
t for the resolved condition to hold. On the other hand, the �rst attack extends
well, in that the probability of the output words being patterned drops modestly
as the number of discarded words increases.

9 Discussion

Section 3 describes an interesting weakness of RC4 which results from the sim-
plicity of its key scheduling algorithm.We recommend to neutralize this weakness
by discarding the �rst N words of each generated stream. After N rounds, every
element of S is swapped at least once and the permutation S and the index j
are expected to be "independent" of the initialization process.

Section 6 describes a weakness of RC4 in a common mode of operation in
which attacker visible IV's are concatenated with a �xed secret key. It is easy

8 the �rst attack works only for some key lengths.

to extend the attack to other simple types of combination operators (e.g., when
we XOR the IV and the �xed key) with essentially the same complexity. We
recommend to neutralize this weakness by avoiding this mode of operation, or
by using a secure hash to form the key presented to the KSA from the IV and
secret key.

A Applying The Attack to WEP-like Cryptosystems

The Wired Equivalent Privacy (WEP) protocol is designed to provide privacy
to packet based wireless networks based on the 802.11 standard (see [LMSon]).
It encrypts by taking a secret key and a per-packet 3 byte IV, and using the
IV followed by the secret key as the RC4 key. Then, it transmits the IV, and
the RC4 encrypted payload. By using the results from Section 7.1, we can show
how, by examining enough ciphertext packets, to reconstruct the secret key for
a WEP-like cryptosystem. Note that we have not attempted to attack an actual
WEP connection, and hence do not claim that WEP is actually vulnerable to
this attack.

We assume that the attacker is able to retrieve the �rst byte of the RC4
output from each packet9. By the analysis done in section 7.1, to recover key
byte B, the attacker needs to know the previous key bytes, and then search for
IVs that sets up the permutation such that

X = SB+3[1] < B + 3 (1)

X + SB+3[X] = B + 3

With 60 such IVs, the attacker can rederive the key byte with reasonable
probability of success. The number of packets required to obtain that number
of IVs depends on the exact IVs that the sender uses. Although the 802.11
standard does not specify how an implementation should generate these IVs,
common practice is to use a counter to generate them.

A.1 Analysis of IVs Generated by a Little Endian Counter

If the IVs are generated by a multibyte counter in little endian order (and hence
the �rst byte of the IV increments the fastest), then the attacker can search for
IVs of the form (B; 255; N) for 3 � B < 8. If he can collect these for 60 di�erent
values of N, then he can derive the secret key with little work. This requires
approximately 4,000,000 packets.

9 Because of the payload format used with 802.11, the attacker typically does know
the �rst byte of each plaintext payload, and hence is able to derive the �rst byte of
RC4 output.

A.2 Analysis of IVs Generated by a Big Endian Counter

If the IVs are generated by a multibyte counter in big endian order (and hence
the last byte of the IV increments the fastest), then the attacker can, as above,
search for IVs of the form (B; 255; N). This requires approximately 1,000,000
packets to collect the requisite IVs, assuming that the counter starts from zero.

However, if the counter doesn't start from zero, the attacker has an alter-
native strategy available to him. He can assume the �rst several bytes of secret
key, and then search for IVs that set up the permutation as in Equation 1. If
the attacker assumes the �rst two bytes of secret key, then for each initial IV
byte, there are approximately 4 settings of the remaining two bytes that set
up the permutation as required to rederive a particular key byte. Hence, with
approximately 1,000,000 packets, and an additional 216 work factor, he can still
rederive the key.

It is common practice in the industry to extend the length of the WEP
secret key (which is speci�ed as 40 bit). Because the above attacks recover each
key byte individually, the complexity of the attack grows linearly rather than
exponentially with the key length, and thus even an extremely long key is not
immune to this attack.

B Ciphertext-Only Distinguishers based on the

Invariance Weakness

The distinguishers we presented in Section 5.1, as well as most of the distin-
guishers mentioned in the literature (for RC4 and other stream ciphers) assume
knowledge of the plaintext in order to isolate the XORed key stream.

However, in practice the only information the attacker has is typically some
statistical knowledge about the plaintext, e.g., that it contains English text.
Combining the non-random behaviors of the plaintext and the key-stream is not
always possible, and there are cases where XORing biased streams result with
a totally random stream, e.g. when one stream is biased in its even positions
and the other stream is biased in its odd positions. We prove here that if the
plaintexts are English texts, it is easy to construct a ciphertext-only distinguisher
from our biases. The intuition of this construction is that the biases described
in Section 5.1 are in the distribution of the lsb's, and consequently they can be
combined with the non-random distribution of the lsb's of English texts.

There are many major biases in the distribution of the lsb's of English texts,
and they can be combined with biases of the key-stream words in various ways.
In Theorem 3, we show how to combine the distribution of the �rst lsb of the
RC4 output stream, with the �rst order statistics of English texts10 :

Theorem 3 Let C be the ciphertext generated by RC4 from a random key and

the ASCII representation of plaintexts, distributed according to the �rst order

10 Since the purpose of the theorem is only to demonstrate this approach , we ignore
the fact that the distribution of the �rst characters in an English sentence di�ers
from the distribution of mid-text characters.

statistics of English texts. Let p be the probability of a random key to be special

2-exact. Then C can be distinguished from a random stream by analyzing about
200

p2
output words.

For example, for RC4n=8 with 8 byte keys, p = 2�16, which implies a reliable
ciphertext-only distinguisher that works with less than 240 data. The proof of
Theorem 3 is based on the observation that the lsb of a random English text
character is zero with probability of about 55%. The formal proof is omitted due
to space limitations.

It is important to note that Theorem 3 does not use all the statistical infor-
mation which is available in either the key-stream or the plaintext distributions,
and consequently does not represent the best possible attack.

C The Sampling Resistance of RC4

Most of the Time/Memory/Data tradeo� attacks on stream ciphers are based
on the following paradigm. The attacker keeps a database of [state,output] pairs
(sorted by output) and lookups every subsequence of the output stream in this
database. When a (su�ciently long) database sequence is located in the output,
the attacker can conclude that the actual state is the one stored along with this
sequence and predict the rest of the stream.

A drawback of this approach is that the large database must be stored in a
hard disk(s) whose random access time is about a million times slower than a
computational step. To improve that attack we can keep on disk only states that
are guaranteed to produce outputs with some rare but easy recognizable property
(e.g., starting with some pre�x �). In this case only output sequences that have
this property have to be searched in the database, and thus the expected time
and the expected number of disk probes is signi�cantly reduced.

In general, producing a pair [state,output] with such a rare property costs
much more than producing a random pair. O(1

p
) random states are required to

�nd a single pair, where p is the probability of a random output to have this prop-
erty. However, if we can e�ciently enumerate states that produce such outputs,
the number of sampled states decreases dramatically, and this method can be
applied without signi�cant additional cost during the preprocessing stage. The
sampling resistance of a stream cipher provides a lower bound on the e�ciency
of such enumeration.

Such an attack can be applied to RC4 in two ways, based on the KSA and
PRGA parts. An attack on the generation part constructs a database of pairs
[RC4 state, output substring] and analyzes all the substrings along a single out-
put stream. The database construction is very simple since it is easy to enumerate
states which produce outputs that have some constant pre�x. However, this enu-
meration seems to be useless due to the huge e�ective key of this part (1684 bits)
which makes such a tradeo� attack completely impractical. A more promising
approach is based on the KSA part which uses a key of 40-256 bits and might be
vulnerable to tradeo� attacks. In this case, the pairs in the database are [secret

key, pre�x of the output stream], and the attack requires pre�xes from a large
number of streams (instead of a single long stream).

The correlation described in Section 4 provides an e�cient sampling of keys
that are more likely to produce output pre�xes of the patterned type speci�ed
above (constant (mod b)).

For example, consider the problem of sampling M keys which are trans-
formed by the KSA into streams whose �rst �ve words are �xed (mod 16). This
property of random streams has probability of 2�20, and the expected number
of disk probes during the actual attack is reduced by this factor. For stream
ciphers with high sampling resistance, such a �lter would increase the prepro-
cessing time by a factor of one million, as one would have to sample a million
random keys in order to �nd a single \good" key. For RC4 (due to the invariance
weakness), the preprocessing time increases by a factor of less than four, as more
than one quarter of the exact special keys produce such streams. Consequently,
the preprocessing stage is accelerated by a factor of 218.

To summarize this section, we proved that RC4 has relatively low Sampling

Resistance, which greatly improves the e�ciency of tradeo� attacks based on its
KSA.

D Deriving the Secret Key from an Early Permutation

State

Given the values SA[0]; : : : ; SA[A�1], one method to �nd all values ofK[0]; : : : ;K[A�
1] that result in such a permutation is:

i = 0
S = f0; : : : ; N � 1g
For i = 0 : : : A� 1

X = S�1[SA[i]]
If i < X < A

Branch over all values of 0 � X < A s.t. X � I or
S[X] 6= SA[X], running the remaining part of this
algorithm for all such values.

K[i] = X � j � S[i]
j = X
Swap(S[i], S[j])

Verify that fS[0]; : : : ; S[A� 1]g = fSA[0]; : : : ; SA[A� 1]g

The number of times this algorithm will perform an iteration is bounded by
A�+1, where � if the number of values 0 � x < A where SA[x] < A. Because �
is typically quite small, this algorithm is typically e�cient.

An algorithm with a better lower bound on run time could be given by using
the values of SA[A]; : : : ; SA[N � 1].

References

[BSW00] A. Biryukov, A. Shamir, and D. Wagner. Real time cryptanalysis of a5/1
on a pc. In FSE: Fast Software Encryption, 2000.

[FM00] Fluhrer and McGrew. Statistical analysis of the alleged rc4 keystream gen-
erator. In FSE: Fast Software Encryption, 2000.

[Gol97] Goli�c. Linear statistical weakness of alleged RC4 keystream generator.
In EUROCRYPT: Advances in Cryptology: Proceedings of EUROCRYPT,
1997.

[GW00] A. L. Grosul and D. S. Wallach. a related-key cryptanalysis of rc4. June
2000.

[KMP+98] Knudsen, Meier, Preneel, Rijmen, and Verdoolaege. Analysis methods for
(alleged) RC4. In ASIACRYPT: Advances in Cryptology { ASIACRYPT:

International Conference on the Theory and Application of Cryptology.
LNCS, Springer-Verlag, 1998.

[LMSon] Wireless lan medium access control (MAC) and physical layer (PHY) spec-
i�cations. (IEEE Standard 802.11), 1999 Edition. L. M. S. C. of the IEEE
Computer Society.

[MS01] I. Mantin and A. Shamir. A practical attack on broadcast RC4. In FSE:

Fast Software Encryption, 2001.
[MT98] Mister and Tavares. Cryptanalysis of RC4-like ciphers. In SAC: Annual

International Workshop on Selected Areas in Cryptography. LNCS, 1998.
[Rei01] Arnold Reinhold. The ciphersaber home page. 2001.
[Roo95] A. Roos. A class of weak keys in the rc4 stream cipher. September 1995.
[Wag95] D. Wagner. Re: Weak keys in rc4. September 1995. Posted to sci.crypt,

Archived at http://www.cs.berkeley.edu/ daw/my-posts/my-rc4-weak-keys.

` q b k1
a k2

b pc PRND
d PRC4

e Data

4 1 2 12 15 2�3 2�15 2 � 2�15 215

6 1 2 14 18 2�4 2�18 2 � 2�18 218

8 1 2 16 21 2�5 2�21 2 � 2�21 221

10 1 2 18 24 2�6 2�24 2 � 2�24 224

12 1 2 20 27 2�7 2�27 2 � 2�27 227

14 1 2 22 30 2�8 2�30 2 � 2�30 230

16 1 2 24 34 2�10 2�34 2 � 2�34 234

Fig. 5. Data required for a reliable distinguisher, for di�erent key sizes

a number of predetermined bits (q(`� 1) + n+ 1)
b number of determined output bits
c probability of these k1 key bits to determine these k2 output bits (taken from Figure 8)
d = 2�k2
e � PRND + 2�k1p

IV Length Probability Expected IVs required

3 4:57 � 10�5 1310000

4 4:50 � 10�5 1330000

5 1:65 � 10�4 364000

6 1:64 � 10�4 366000

7 2:81 � 10�4 213000

8 2:80 � 10�4 214000

9 3:96 � 10�4 152000

10 3:94 � 10�4 152000

11 5:08 � 10�4 118000

12 5:04 � 10�4 119000

13 6:16 � 10�4 97500

14 6:12 � 10�4 98100

15 7:21 � 10�4 83200

16 7:18 � 10�4 83600

Fig. 6. For various prepended IV and known secret key pre�x lengths, the probability
that a random IV will give us information on the next secret key word, and the expected
number of IVs required to derive the next secret key word.

IV Settings

Condition First Second Third Probability Result

SA[1] = 1 Swap with 1 Swap with Y Cycle 0.0037 Key recovery
SA[A] = A

SA[1] = 2 Swap with 1 Cycle Swap with Y 0.0070 Key reduction
SA[A+ 1] = A+ 1

SA[1] = X < A Swap with Y Cycle Cycle 0.0007 Key recovery
SA[X] +X = A

SA[1] = X < A Cycle Swap with Y Cycle 0.0009 Key recovery
SA[X] +X = A+ 1

SA[1] = X < A Cycle Cycle Swap with Y 0.0007 Key reduction
SA[X] +X = A+ 2

SA[1] = A Swap with Swap with Y Cycle 0.0037 Key recovery
S�1A [1]

SA[1] = A+ 1 Swap with Y Swap with Cycle 0.0036 Key recovery
S�1A [N � 1]

SA[1] = A+ 2 Cycle Swap with Y Swap with 0.0038 Key reduction
S�1A [N � 1]

SA[1] = N � 2 Swap with Y Cycle Swap with 1 0.0034 Key reduction
SA[A+ 2] = A+ 2

SA[1] = N � 1 Swap with Y Swap with 1 Cycle 0.0036 Key recovery
SA[A+ 1] = A+ 1

SA[1] = X < A Swap with X Cycle Cycle 0.1007 Key reduction
SA[A] = Z

X + Z > A+ 2

Fig. 7. Weak secret keys with 3 word post�x IVs. Listed are the conditions on the SA
permutation that distinguish them, the IV properties that the attacker searches for to
reveal S[Y], the probability that this class of weak key will occur with n = 8 and a 16
word secret key, and the result of the attack on the weak key.

0
10

20
30

40
50

60
−30

−25

−20

−15

−10 −5 0

Log of the probability of patterned prefix of size h

h − size of the patterned prefix q=1
q=2
q=3
q=4

F
ig
.
8
.
T
h
is
g
ra
p
h
d
em

o
n
stra

tes
th
e
p
ro
b
a
b
ilities

o
f
sp
ecia

l
k
ey
s
(2
q-ex

a
ct
w
ith

K
[0
]
=

1
,
m
s
b(K

[1
]
=
1
))

o
f
R
C
4
n
=
8
;`
=
1
6
to

p
ro
d
u
ce

strea
m
s
w
ith

lo
n
g
p
a
ttern

ed
p
re�

x
es

